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Abstract
The phase stability and site preference of the intermetallics R3(Fe, T)29

(R = Nd, Gd, Y; T = Ta, W) with Nd3(Fe, Ti)29 structure have been
investigated by lattice inversion potentials. The calculated results indicate that
each of the stabilizing elements Ta and W significantly decreases the cohesive
energy of R3(Fe, T)29 and plays a role in stabilizing the 3:29 structure. Among
the 11 different kinds of Fe sites in these compounds the preferential sites
of Ta and W are 4i3, 4i4 and 4g sites. The calculated lattice parameters of
R3(Fe, T)29 compounds are in good agreement with the experimental data. The
structural stability of the R3(Fe, T)29 compounds is further tested at different
temperatures. Based on the pair potential curves an intuitive explanation for
the phase stability and solubility is made.

1. Introduction

The rare earth (R)–transition metal (T) intermetallic compounds have attracted great interest
because of their potential application for permanent magnets [1]. In 1992, Collocott et al
[2] synthesized a new compound defined as Nd2(Fe, Ti)19. Subsequently, x-ray powder
diffraction [3] and neutron diffraction [4] showed that this new ternary compound crystallizes
in monoclinic structure with space group P21/c and the exact formula is Nd3(Fe, Ti)29.
Later, Kalogirou et al [5] suggested that Nd3(Fe, Ti)29 could be described more accurately
in the A2/m space group with 13 different crystallographic sites, including 11 positions for
transition metal atoms and two positions for rare-earth atoms. From then on,many intermetallic
compounds R3(Fe, T)29 (R = rare earth and Y, T = Ti, V, Cr, Mn, Mo) with Nd3(Fe, Ti)29-
type structure have been synthesized [6–8].

In our previous work, we have studied the phase stability and site preference of R3(Fe, T)29,
in which T represents some certain 3d and 4d elements; the results are in good agreement with
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experimental results. In this work, we expand the pair potential method to the R3(Fe, T)29

compounds with T = 5d elements (Ta, W).
An introduction to the methodology for the calculation is given in section 2; the results for

a variety of structural calculations are shown in section 3; in section 4 discussion and analysis
are presented and in the last section conclusions are summarized.

2. Methodology

2.1. Lattice inversion technique

Here, we take a single element crystal as an example to explain how to use Chen’s lattice
inversion method to obtain the interatomic pair potentials [9–13]. The crystal cohesive energy
can be written as

E(x) = 1
2

∞∑
n=1

r0(n)φ(b0(n)x) (1)

where x is the nearest-neighbour interatomic distance, r0(n) the nth-neighbour coordination
number, b0(n)x the distance between the reference central atom and its nth neighbour and
�(x) the pair potential. By a self-multiplicative process of the element in {b0(n)}, {b(n)}
forms a closed multiplicative semi-group. Then the general equation for the interatomic pair
potential obtained from inversion can be expressed as

φ(x) = 2
∞∑

n=1

I (n)E(b(n)x). (2)

The coefficient I (n) can be obtained by
∑

b(n)/b(k)

I (n)r

(
b−1

[
b(k)

b(n)

])
= δk1. (3)

They are uniquely determined by the crystal geometrical structure, which is independent of
the kind of specific element. Thus the interatomic pair potentials can be obtained from the
known cohesive energy function E(x).

2.2. Acquisition of effective potentials

Due to the structural complexity of ternary alloys R3(Fe, T)29, the ab initio calculation of
the cohesive energy curves for R3(Fe, T)29 is impossible or very difficult. In order to find
some effective interatomic potentials with the lattice inversion technique, a practical method
of performing the calculation of cohesive curve is needed. For this, the search and design of
some simple and virtual structures covering the necessary interatomic potentials are important
for us. For example, in order to obtain potentials �R−R(r), �Fe−Fe(r) and �R−Fe(r), we
designed three structures as follows.

First, let us consider the structure of BCC Fe as a B2 or CsCl structure with two simple
cubic sublattices Fe1 and Fe2. Thus, we calculate

E(x) = EBCC
Fe (x) − ESC

Fe1
(x) − ESC

Fe2
(x)

=
∞∑

i, j,k �=0

�Fe−Fe

(√
4
3 [(i − 1

2 )2 + ( j − 1
2 )2 + (k − 1

2 )2]x
)

where x is the nearest-neighbour distance in the BCC structure, EBCC
Fe (x) represents the total

energy curve with a BCC structure and ESC
Fe1

(x) or ESC
Fe2

(x) is the total energy function with
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Figure 1. Some important interatomic potentials for R–Fe–T (R = Gd, Nd; T = Ta, W)
compounds.

a simple cubic structure. Now, E(x) automatically becomes the cohesive energy function of
one Fe1 atom with all the Fe2 atoms. Then the �Fe−Fe(r) can be obtained directly by using the
lattice inversion technique.

Similarly, let us consider a metal R with the FCC structure. We may calculate

E(x) = EFCC
R (x) − ESC

R (x) − E ′
R(x)

where ESC
R (x) is attributed to the simple cubic structure, in which all the atoms occupy the

corner sites and E ′
R(x) is attributed to the atoms occupying the face centre sites. Thus, the

�R−R(x) can also be obtained by the lattice inversion technique.
The calculation of the total energy curve related to �R−Fe(x) is very hard to perform.

We find that the calculation for R3Fe with L12 structure can be done in a nearly equilibrium
position, and this gives simply the three parameters for the cohesion function under the Morse
approximation or Rose approximation. From the above procedures the interatomic potentials
can be obtained. Several important relevant interatomic pair potential curves are shown in
figure 1.

2.3. Application of the pair potentials

Chen’s inversion theorem has been developed to a rigorous and concise approach to obtain
the interatomic pair potentials based on the cohesive energy curves. We have made a serial
application of the interatomic pair potentials to observe the consistency between the calculated
and experimental results. It has been applied successfully to study the lattice dynamics [14, 15],



1354 L Jia et al

(a)

(b)

Figure 2. The contour maps of the charge density: (a) on the (0 0 1) plane of NdFe5; (b) on the
(1 0 0) plane of Nd3Fe29. The denoted numbers indicate the numbers of electrons Å−3.

(This figure is in colour only in the electronic version)

site preference of ternary additions in Ni3Al and Fe3Al [16, 17], phase stability in rare-earth
intermetallic compounds [18–23] and so on. It is found finally that the inverted pair potentials
are quite reliable for the calculations of the cohesive energy and the structural properties of
rare-earth intermetallics; for example, they can predict the phase stability, site preference and
lattice constants.

Figure 2 shows the contour maps of charge density in RFe5 and R3Fe29 which are calculated
using the CASTEP software package [24]. In these cases, the main part of the charge density
distributions surrounding each atom demonstrates spherical symmetry and does not show
evident directionality. This could partly explain why the simple isotropic pair potentials
work for these systems. We can thereby simulate the multi-element system with a large
cell, e.g. (R3(Fe, T)29)2×2×2 in this paper, and take the relaxation effect into account, sheering
away from the difficulties of quantum mechanics when treating a large cell.

On the other hand, the pair potentials are not universal for any atomistic simulation. The
pair potentials cannot, in principle, include the effects of directional bonds. For example, in
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Figure 3. The cohesive energies of different relaxed structures of R3Fe29 compounds.

semiconductors or pure bcc metals, the pair potentials are ineffective to deal with the directional
effects. Further, pair potentials are not able to reproduce correctly all elastic constants. There
are various Cauchy relations which are not usually fulfilled by the system studied. In these
cases many-body terms should be considered.

3. Calculated results for the ternary compounds R3(Fe, T)29

The structures of R3Fe29 and R3(Fe, T)29 have been calculated by the energy minimization
process with the conjugate gradient method. The cut-off radius of atomic interactions was
taken to be 14 Å. A supercell with 512 atoms has been employed to represent the system.

3.1. Structure

As before a metastable binary structure R3Fe29 is taken at the beginning, which can be obtained
from the RFe5 structure, with the replacement of two-fifths of the R atoms in RFe5 by Fe–
Fe dumbbells [19]. In this procedure we attempt different types of substitutions for rare-
earth atoms then let the structure relax under the pair potentials. In the end, we get six
kinds of structures which belong to A2/m, Cc, P21/m, P3m1, P 6̄m2 and Pc space groups
respectively. The cohesive energies of the R3Fe29 (R = La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Y)
with different space groups are listed in figure 3. It can be seen that the structure with A2/m
space group has the lowest cohesive energy except for Dy. In this paper, we only take account
of the structure with A2/m space group. Figure 4 shows the calculated x-ray diffraction
spectrum of Y3Fe29, which is very close to the experimental spectrum of Y3(Fe, Ti)29 [25].

3.2. Phase stability

Based on the above R3Fe29 structures and the interatomic potentials (�R−R(r), �Fe−Fe(r),
�T−T(r), �R−T(r), �R−Fe(r) and �Fe−T(r)), the phase stability of R3Fe29−x Tx with ternary
elements T can be tested. Firstly, a certain number of T atoms are substituted for the Fe atoms
at one kind of sites in R3Fe29. Secondly, the energy minimization procedure is applied to
relax the ternary system under interatomic potentials. Thus, the curves of the cohesive energy
versus the content of ternary element for each kind of Fe sites can be obtained. The results are
shown in figure 5. To avoid the random error, the results are taken as the arithmetic average
of 30 stochastic samples. In fact, the fluctuation is very small. It can be seen in figure 5 that
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Figure 4. Calculated XRD of Y3Fe29 and experimental results of Y3(Fe, Ti)29.

the cohesive energies decrease obviously with the increasing content of the ternary elements,
thus Ta and W atoms can stabilize the system.

3.3. Site preference and tolerance

Comparing the curves shown in figure 5, it is found that the cohesive energies decrease most
significantly when T atoms occupy 4i3, 4i4 and 4g sites. Therefore, the T atoms preferentially
occupy the 4i3, 4i4 and 4g sites, which are in good agreement with the experimental results [26].

It is seen that there is a deviation in the curves of Gd3Fe29−x Tax as shown in figure 5(a);
when the content of ternary element x > 1.9, the cohesive energy of the preferable 4g sites is
higher than that of 8j1 and 8j2 sites. This does not mean that the element Ta prefers to occupy
8j1 or 8j2 sites instead of 4g sites. This can be explained by the tolerance. The so-called
tolerance is the distance of the atom deviating from the lattice point when identifying the space
group of the crystal and the tolerance range indicates the atomic derivation distance, which can
be viewed as the error in the process of determining the space group of the compound. In fact,
when the ternary element occupies 4i3, 4i4 and 4g sites the value of tolerance is under 0.6 Å,
but for 8j1 or 8j2 sites, the value of tolerance exceeds 0.8 Å. The large tolerance indicates the
instability of the substitution.

The tolerance is shown in figure 6. Note that the tolerance of the three preferential sites is
different; the relation of the tolerance values for the three sites is 4i3 < 4i4 < 4g: this indicates
the order of site preference of Ta and W in R3(Fe, T)29 is 4i3, 4i4 and 4g.

It can also be seen in figure 6 that, when x = 2.0, the tolerance of the three sites suddenly
drops down to 0.01 Å. This is because the Fe atoms at the particular sites are all substituted,
and the structure of the system is very symmetric. Hence, in the process of minimization with
the conjugate gradient method, the space group of A2/m is easy to keep. We cannot draw a



Phase stability and site preference of R3(Fe, T)29 (R = Nd, Gd, Y; T = Ta, W) 1357

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2

-6.50

-6.45

-6.40

-6.35

-6.30

-6.25

2c 4i
4

4e 8j
1

4g 8j
2

4i
1

8j
3

4i
2

8j
4

4i
3

Y
3
Fe

29-x
Ta

x

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2

-6.15

-6.10

-6.05

-6.00

-5.95

-5.90

2c 4i
4

4e 8j
1

4g 8j
2

4i
1

8j
3

4i
2

8j
4

4i
3

Gd
3
Fe

29-x
Ta

x
C

o
h

es
iv

e 
E

n
er

g
y 

(e
V

/a
to

m
)

C
o

h
es

iv
e 

E
n

er
g

y 
(e

V
/a

to
m

)

C
o

h
es

iv
e 

E
n

er
g

y 
(e

V
/a

to
m

)
C

o
h

es
iv

e 
E

n
er

g
y 

(e
V

/a
to

m
)

Content of ternary element x Content of ternary element x

Content of ternary element x Content of ternary element x

(a) (b)

(c) (d)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2

-6.15

-6.10

-6.05

-6.00

-5.95

-5.90

2c 4i
4

4e 8j
1

4g 8j
2

4i
1

8j
3

4i
2

8j
4

4i
3

Gd
3
Fe

29-x
W

x

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2

-6.25

-6.20

-6.15

-6.10

-6.05

-6.00
Nd

3
Fe

29-x
W

x

2c 4i
4

4e 8j
1

4g 8j
2

4i
1

8j
3

4i
2

8j
4

4i
3

Figure 5. The dependence of cohesive energy on the content of T (T = Ta, W) elements in
R3Fe29−x Tx (R = Gd, Y, Nd).

Table 1. Comparison of lattice constants between the calculated and experimental values [26–28].

Cell parameters

a Err. b Err. c Err. β Err. V Err.
Compounds (Å) (%) (Å) (%) (Å) (%) (deg) (%) (Å3) (%)

Gd3Fe28Ta (cal.) 10.582 0.18 8.499 0.01 9.761 0.32 97.14 0.12 871.21 0.14
(Exp.) 10.601 8.498 9.730 97.02 869.96
Gd3Fe28.2W0.8 (cal.) 10.562 0.18 8.479 0.64 9.748 0.51 97.04 0.19 866.40 0.36
(Exp.) 10.581 8.534 9.699 96.86 869.50
Y3Fe28Ta (cal.) 10.600 0.49 8.516 0.47 9.769 1.1 97.14 0.66 874.10 1.89
(Exp.) 10.548 8.476 9.663 97.78 857.81
Nd3Fe27.5W1.5 (cal.) 10.719 1.01 8.595 0.21 9.852 1.13 97.41 0.68 902.35 2.45
(Exp.) 10.612 8.577 9.742 96.75 880.72

conclusion that when x = 2.0 there exists the most stabilized state, and we can verify this in
the reported experimental results [26–28].

3.4. Cell parameters

The calculated cell parameters are listed in table 1. In the calculation the ternary elements
were assumed to distribute randomly in the 4i3 sites. Comparing the calculated results with
the experimental data, it is found that the largest deviation is 1.01% for a, 0.64% for b and
1.13% for c. For the volume of the R3(Fe, T)29 unit cell, the average deviation is 1.21%,



1358 L Jia et al

0.0 0.5 1.0 1.5 2.0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Gd

3
Fe

29-x
Ta

x

4g
4i

3

4i
4

T
o

le
ra

n
ce

 (
Å

)
T

o
le

ra
n

ce
 (
Å

)

T
o

le
ra

n
ce

 (
Å

)
T

o
le

ra
n

ce
 (
Å

)

0.0 0.5 1.0 1.5 2.0

0.0

0.1

0.2

0.3

0.4

0.5

4g
4i

3

4i
4

Gd
3
Fe

29-x
W

x

0.0 0.5 1.0 1.5 2.0

0.0

0.1

0.2

0.3

0.4

0.5

0.6
Y

3
Fe

29-x
Ta

x
4g
4i

3

4i
4

0.0 0.5 1.0 1.5 2.0

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35 Nd
3
Fe

29-x
W

x4g
4i

3

4i
4

(a) (b)

(c) (d)

Content of ternary element x Content of ternary element x

Content of ternary element x Content of ternary element x

Figure 6. Tolerance of R3Fe29−x Tx (R = Gd, Y, Nd; T = Ta, W).

Table 2. The MD results of Y3Fe28Ta and Nd3Fe27.5W1.5.

Cell parameters
Tolerance Space

Compounds T (K) a (Å) b (Å) c (Å) Beta (deg.) (Å) group

Y3Fe28Ta 300 10.6058 8.5291 9.7865 97.1354 0.32 A2/m
600 10.6236 8.5433 9.8034 97.1365 0.39 A2/m
800 10.6355 8.5526 9.8151 97.1354 0.39 A2/m

1000 10.6477 8.5620 9.8272 97.1326 0.40 A2/m
Nd3Fe27.5W1.5 300 10.7385 8.6310 9.8679 97.4090 0.34 A2/m

600 10.7572 8.6458 9.8851 97.4090 0.43 A2/m
800 10.7696 8.6559 9.8973 97.4125 0.50 A2/m

1000 10.7832 8.6661 9.9084 97.4137 0.50 A2/m

and the largest deviation is 2.45%. Figure 7 shows the lattice parameters as a function of
ternary elemental content for Nd3(Fe1−x Wx)29. As we just discussed above, the contributions
of different kinds of sites are not equal. It can be seen from the curves that when the ternary
element occupies the 4g sites the volume of the compound changes to the greatest degree.

3.5. Molecular dynamics simulation

In order to further verify the phase stability of R3(Fe1−x , Tx)29 at different temperatures,
the molecular dynamics simulation method is used for the systems of (Y3Fe28Ta)2×2×2 and
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Figure 7. Cell parameters of Nd3Fe29−x Wx versus the content of ternary element x .

Table 3. Potential and kinetic energies at different temperatures.

Y3Fe28Ta Nd3Fe27.5W1.5

300 K 600 K 800 K 1000 K 300 K 600 K 800 K 1000 K

E p (eV/atom) −6.338 −6.298 −6.271 −6.244 −6.143 −6.103 −6.077 −6.050
Ek (eV/atom) 0.039 0.077 0.103 0.1281 0.039 0.077 0.103 0.128

(Nd3Fe27.5W1.5)2×2×2. In the calculation the molecular dynamics N PT ensemble is used,
with P = 1 atm, t = 0.001 ps. The molecular dynamics simulation for each of the systems is
carried out at temperatures of 300, 600, 800 and 1000 K, respectively. Table 2 shows the values
of the cell parameters, tolerance and space group calculated at different temperatures. The
most interesting thing is that the space group A2/m can remain in a certain range (tolerance
�0.5 Å) and the lattice parameters change very little with increasing temperature. Table 3
shows the potential energy and kinetic energy at the different temperatures. It can be seen
from the table that both the values of potential and kinetic energy increase with the increasing
temperature, but the contribution of interatomic potentials to the internal energy of the system is
much larger than that from thermal motion energy. Therefore, the crystal structure at different
temperatures is basically determined by the interatomic pair potentials.

Here, high temperature disturbance embodies the dynamic equilibrium properties at
different temperatures. It is reasonable to conclude that the inverted pair potentials are effective
in studying not only the characters of the equilibrium state but also the non-equilibrium
properties to some extent.
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4. Discussion and analysis

4.1. Phase stability

The stabilizing effect of the ternary elements can be qualitatively analysed based on the pair
potential curves. When ternary elements are involved in the ternary compounds there are six
pairs of interatomic potentials in the system, i.e. �R−R(r), �Fe−Fe(r), �T−T(r), �R−T(r),
�R−Fe(r) and �Fe−T(r). These potentials show different effects on the system in different
situations. When a small number of ternary atoms replace the Fe atoms, the atoms surrounding
each ternary atom are mostly Fe atoms. The rare-earth atoms are not their own nearest-
neighbour atoms, and the occasions where two T atoms are the nearest neighbours are truly
rare. Therefore, the difference between �Fe−T(r) and �Fe−Fe(r) becomes the dominating
factor that induces the energy difference between before and after substitution, and the role
of �R−R(r) and �T−T(r) can be ignored. If �Fe−T(r) < �Fe−Fe(r), the ternary element
will show the effect of stabilizing the structure. For example, with Gd3(Fe, Ta)29, as can be
seen in figure 1, �Fe−Ta(r) intersects �Fe−Fe(r) at 2.74 Å. When the interatomic distance is
r > 2.74 Å, we have �Fe−Ta(r) < �Fe−Fe(r). This means Ta atoms substituting for Fe will
result in the decrease of the system cohesive energy, and Ta can stabilize the system.

When the amount of the ternary element increases, the T atoms will have more opportunity
to get close to other T atoms or rare-earth atoms and �T−T(r) or �T−R(r) should be involved.
For the system of Gd3Fe29−x Tax , �Gd−Ta(r) intersects �Gd−Fe(r) at 3.12 Å, and �Ta−Ta(r)

intersects �Fe−Fe(r) at 2.94 Å. If r < 3.12 Å we have �Gd−Ta(r) > �Gd−Fe(r), and if
r < 2.94 Å we have �Ta−Ta(r) > �Fe−Fe(r). When the ternary element atoms are excessive,
the average distance between the R atom and T atom or between the T atom and T atom
decreases; then the total energy will increase, which causes a structural instability.

4.2. Solubility

The solubility can also be qualitatively analysed based on the pair potential analysis. Figure 8
shows the pair potentials of some �Fe−T(r) (T = certain 3d, 4d or 5d stabilizing elements). It
can be seen from the figure that the minima of the curves for �Fe−T(r) are lower compared with
that of �Fe−Fe(r), and this may be one of the main reasons why certain 3d, 4d and 5d elements T
(T = Ti, V, Cr, Nb, Mo, Ta, W) can stabilize the R3(Fe, T)29 compounds. When 3d elements
(T = Ti, V, Cr) act as stabilizing elements, the minimum of each curve �Fe−T(r) is adjacent,
but that of �Fe−T(r) with 4d elements (T = Nb, Mo) is lower than that of 3d, and �Fe−T(r)
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with 5d elements (T = Ta, W) is lower than that of 3d and 4d elements. Therefore, different
contents are needed to stabilize R3(Fe1−x , Tx)29 for the different transitional elements, and in
order to stabilize the system more T element in 3d families is needed compared with T element
in 5d families. But we cannot get a very stabilizing compound by adding excessive 5d element.
This is because in this process the atom displacements and crystal distortions become more
and more obvious and it is difficult to maintain the original A2/m structure. This can be seen
in the tolerance analysis in the previous section. With the same ternary content x , the value
of tolerance of a 5d element is much larger than that of a 3d element [19]. Consequently, the
range of solubility of 5d elements is narrower than that of 3d elements. It has been found that
the content x of 5d ternary elements needed for stabilizing the 3:29 structure is not more than
1.5 [26–28].

For the synthesized compounds with Nd3(Fe, Ti)29 structure, the non-magnetic elements
usually act as stabilizing selement, and the minimum content needed to stabilize the system
varies for the different ternary elements. The system needs a smaller amount of certain 5d
elements than of 3d elements for the stabilized state and the loss of the magnetic properties
will be small.

5. Conclusion

The interatomic potentials related to R (rare earth Nd, Gd and Y) and transition elements (Fe
and 5d elements Ta, W) have been obtained in terms of the lattice inversion method. Using
these potentials the behaviour of the 5d transition elements Ta, W acting as the ternary elements
in R3(Fe, T)29 compounds have been studied. It is found that both Ta and W can stabilize the
ternary compounds well even though the atom is heavier and the atomic radius is larger than 3d
or 4d transition elements. The two ternary elements prefer to occupy the 4i3, 4i4, and 4g sites,
but these sites are still different for attracting the ternary elements Ta and W. The preferential
order of Ta and W basically is 4i3, 4i4 and 4g. The calculated cell parameters of Gd3Fe28Ta,
Gd3Fe28.2W0.8, Y3Fe28Ta and Nd3Fe27.5W1.5 are in good agreement with the experiments. In
order to further examine the structural stability at different temperatures, molecular dynamics
simulations have been employed,and the results show that within the range of tolerance< 0.5 Å
the relaxed structure of the compounds can remain in the space group of A2/m. Based on the
interatomic potential curves, the phase stability and the solubility are qualitatively analysed. It
is found that the solubility of 5d elements is narrower than that of 3d or 4d elements. The lower
solubility means fewer non-magnetic ternary atoms are added, which induces more magnetic
Fe atoms to remain. Therefore, the 5d elements Ta and W will benefit the magnetic properties
of the materials compared with the 3:29 materials with 3d or 4d ternary elements.
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